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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2207

ANATYSIS OF TURBULENT FREE-CONVECTION ROUNDARY LAYER
ON FLAT PLATE

By E. R. G. Eckert and Thomas W. Jackson

SUMMARY

With the use of Kérmdn's integrated momentum equation for the
boundary layer and data on the wall-shearing stress and heat transfer
in forced-convection flow, & calculation was carried out for the flow
and heat transfer in the turbulent free-convection boundary layer on a
vertical flat plate. The calculation is for a fluid with a Prandtl
number that is close to unity.

A formula was derived for the heat-transfer coefficient that was
in good_ agreement with experimental data in the range of Grashof numbers
from 100 to 1012, Because of the good agreement between the theoreti-
cal formula and the experimental data the formula may be used to obtain
data for higher Grashof numbers. The calculation also yielded formulas
for the maximum velocity in the boundary layer and for the boundary-
layer thickness.

INTRODUCTION

Recent developments in the field of gas turbines have revealed the
need for data on heat transfer in turbulent free-convection flow at
very high Grashof numbers (lO12 to 1015). For instance, in using the
method of free-convection cooling for turbine blades, the centrifugal
forces generate a free-convection flow of the cooling fluid in the
blade passages that is within the preceding range of Grashof numbers.
Free-convection flow is also superimposed on the flow of the cooling
air in the hollow blades of air-cooled gas turbines and may consider-
ably influence the heat transfer under certain conditions. The radial
flow present in the cooled boundary layers on the outside of cooled
turbine blades is also of a type similar to the free-convection flow
in the blade coolant passages.

In order to understand and evaluate such cooling processes,
information on the heat transfer, on the boundary-layer thickness, and
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on the velocities connected with free-convection flow is necessary. The
xnowledge of turbulent free-convection flow, however, is limited.
Experiments on plane vertical surfaces give heat-transfer data up to
Grashof times Prandtl numbers of 1012 (summarized in references 1 and
2). Griffiths end Devis (reference 3) determined in addition tempera-
ture and velocity profiles. Watzinger and Johnson (reference 4) meas-
ured heat transfer and temperature and velocity profiles in a super-
imposed forced- and free-convection flow in a vertical tube. Brown and
Marko (reference 5) show by theoretical considerations that a general
relation exists between the Grashof number that characterizes free-
convection flow and the Reynolds number that characterizes forced flow.
Colburn and Hougen (reference 6) derive a formula for the heat transfer
in turbulent free-convection flow on a vertical plate. However, only
the laminar sublayer in the immediate neighborhood of the wall was
investigated in reference 6 and the thickness of this sublayer, made
dimensionless by the shearing stress velocity and the kinematic vis-
cosity, was assumed to be the same as in forced flow. This analysis,
therefore, gives no informestion on the whole boundary-layer thickness
and on the velocities.

The problem of turbulent free-convection flow is approached herein
using another method. Certain shapes are assumed for the teuperature
and velocity profiles in the free-convection boundary layer. In addi-
tion, an empirical relation for the shearing stress on the wall and a
heat-transfer coefficient derived from forced-convection flow are used
to estimate the boundsry-layer thickness, the maximum velocity within
‘the boundary layer, and & heat-transfer coefficient for free-convection
flow. No experimental free-convection measurements are used in the
calculations.

SHEARING STRESS AND HEAT FLOW IN FORCED-
CONVECTION BOUNDARY LAYER
The relations for forced-convection flow that are needed in the
theoretical free-convection calculations are compiled in this section.
It is known that for Reynolds numbers that are not too high, the

velocity profile in a turbulent boundary layer on & flat plate can be
represented by the equation’

u = Y1 (%) _ | ()

1392
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(A1l symbols are defined in the appendix.) The shearing stress on the
plate surface in such a flow is given by the equation (reference 7),

w . p

(2)

This equation is the relation for the shearing stress on the wall that
is used in the derivation of the boundary-layer equations for the tur-
bulent free-convection boundary layer. By introducing the expression
for the velocity profile, the shearing stress can also be expressed by
the velocity uy at the outer edge of the boundary layer and by the

boundary-layer thickness o

1/4

2 [y
T, = 0.0225 pug (a—l-g)

For fluids or gases with a Prandtl number equal to one, the tem-
perature profile is similar in shape to the velocity profile. When the
temperatures within the boundary layer are measured with the temperszture
outside the boundary layer as reference, the expression for the tem-

perature profile is
1/7
= P
e _Gw[:l (5) ] (4)

Equation (4) is velid for values of y less than 8. For larger values
of y, 6 =0.

Reynolds analogy between the turbulent exchange of momentum and
heat gives the relation (reference 8)

q _ at
T = &p @ (5)

Because the temperature and velocity profiles are similar in shape for
a Prandtl number equal to one the finite temperature and velocity 4if-
ferences at two arbitrary points in the flow can be introduced into the
last equation instead of the differentials., Using the differences
between the wall and the flow outside the boundary layer and specifying

the heat flow and the shearing stress for the position at the wall
give the following equation:

q ]
T_W__ = ng ‘.EE (6)
W 1
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The introduction of the law (equation (3)) for the shearing stress into
this expression yields the following equation:

, 1/4
g, = 0.0225 gopc,u; 6y, (azg> . (7)

_Heat transfer is usually calculated with dimensionless moduli. Such a
modulus is the Stanton number :

1/4

. Gy v /

St = e 0.0225 s
8PCpU1 Py uy

Experimental investigations show that for fluids with Prandtl numbers
from approximately 0.5 to 50 (reference 1, p. 520) the same relation
holds when it is multiplied by the factor Pr'z/o.

Q4 1/4 2/3

L B— v ay
- ey = 0-0% (ula) (ex) (8)

This relation for the heat flow g, is used in the derivation of the
boundary-layer equations for the turbulent free-convection boundary
layer.

St

Replacing the boundary-layer thickness & by

1/5
& = 0.366 (42—) /
le

which is the boundary-layer thickness on a flat plate in turbulent
forced-convection flow (reference 1, p. 481), transforms equation (8)
into the widely accepted formula for heat transfer on a flat plate in
the turbulent range

0.8 .
QX (ulX> 1/3
Nu = E@; = 0.029 -5 Pr . (9)

DETERMINATION OF TURBULENT FREE-CONVECTION BOUNDARY LAYER
Derivation of Boundary-Layer Equations

If a stationary plane vertical well is heated to a temperature
higher than the surroundings, the layer of fluid adjacent to the wall

»

1392
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is heated by conduction from the wall. In this way, buoyancy forces
are generated that cause this layer to flow in an upward direction.
This layer of fluid adjacent to the wall to which the vertical motion
is confined is called the free-convection boundary layer. The boundary
layer begins with zero thickness at the lower end of the vertical wall
end increases in thickness in the upward direction. The boundery layer
becomes turbulent, depending on the critical Grashof number, at a cer-
tain distance from the lower end of the well. The distance measured
vertically from the lower end of the wall is called x and the dis-
tance normal to the wall y. In order to determine the boundary-

layer thickness for steady state, a small stationary volume element

in the turbulent region of the boundary layer is considered. Figure 1
shows this volume element. The dimensions of the element are dx along
the wall and 1 normal to the wall. The length 1 should be larger
than the boundary-layer thickness ©&. For two-dimensional flow, the
dimension of the volume element normal to the plane of figure 1 may be
considered to be unity. The upward velocity of the fluid in plane 1-1
at a distance y from the surface of the wall is wu. Then the mass
flow through a small area with a width dy is pu dy and the flow of
momentum in the x-direction is puzdy. The momentum flow in the
x-direction entering the volume element through plane 1-1 is

1
f puzdy
0

In progressing to plane 2-2 the momentum flow changes by

1

bd 2
—= uedy j dx
0 i

The mass flow entering the volume element through plane 1-1 is
generally different from the mass flow leaving the element through
plane 2-2. Therefore fluid enters or leaves the volume element through
the plane parallel to the wall at a distance 1. Because it is assumed
that the velocity in the x-direction outside the boundary layer is so
small that it can be neglected, no momentum in the x-direction is
carried through the plane.

. The rate of change of momentum must be in equilibrium with the
forces acting in the x-direction on the fluid within or on the surface
of the volume element considered. A shearing stress Tw acts on the

wall. The force connected with this stress is T, dx. No shearing
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stress occurs on the surface of the volume element that is parallel to
the wall and at a distance 1 from the wall because outside the bound-
ary layer the velocity in the x-direction is zero,

According to the boundary-layer theory, the pressure change can be
neglected along any normal to the surface. A constant pressure differ-
ence dp therefore exists between planes 1-1 and 2-2. This pressure
difference gives a force on the volume element of magnitude 1 dp. In
addition to the forces on the surfaces there is a force due to the
weight of the fluid within the volume element

1
fpgdy dx
0

The process of summing up all the forces and equating them to the
change in momentum flow gives the momentum equation

1 1
4 pu2 dy} dx =1 dp - kjj pg dy) dx - T, dx
dx o w

0

No flow exists outside the boundary layer and therefére the pres-
sure difference between planes 1-1 and 2-2 is balanced by the weight of
the fluid layer between the planes

dp = pgg dx
When both sides of this equation are multiplied by 1 and the right-

hand side of the equation is changed to the integral form, the follow-
ing equation is obtained

1
de: Opggdydx

Introducing the preceding equation into the momentum equation gives

A 1
’ d ' u2 dy | dx =’g (ps-p) 8y |dx - T, dx
ax P B W
0 0

1392
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Introducing the expansion coefficient defined by the equation

-
- VB t—t&

the first term on the right-hand side of the preceding equation can be
transformed into

1

g ax | Bo(t-ty) ay
0

Designating the difference between the temperature t at the distance y
and the temperature tg outside the boundary layer by 6, the following

expression is obtained:
1

g 4x Ppf dy
0

In the applications considered, the essential influence of the
density changes on the flow is taken into account by the introduction
of the expansion coefficient 2. The octher influences of variable denslty
on the flow and the variation of the expansion coefficient § with
small temperature differences are negligible. Therefore, f and p
can be assumed constant in the preceding expressions. The momentum
equation for the free-convection boundary layer therefore
becomes
A 1

d 2 , .

= u® dy = gB 6 ay - S (10)
0] 0

A similar equation is set up for the heat flow through the volume
element in figure 1. The heat carried with the fluid through plane 1-1
is

. 1
gpcp . ub dy

where the enthalpies cpe are measured from the temperature outside

the boundary layer. The specific heat and density are considered
constant.
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The heat carried out of plane 2-2 differs from that carried into

plane 1-1 by
1

goc,, < w0 dy | ax
| 0

1392

The difference in the heat flow through planes 1l-1 and 2-2 must come
from the surface and the heat flow leaving the plate per unit time and
area 1s therefore,
1
a
Gy = 80Cp 73 ud dy (11)
0

Equation (11) is the heat-flow equation for the free-convection boundary
layer. -

Equations for the laminar free-convection boundary layer that are
analogous to equations (10) and (11) were derived and solved by Squire.
(See reference 9.) .

Solution of Boundary-Layer Equations -

Equations (10) and (11) are sufficient to calculate the boundary-
layer thickness & and the velocity u when the shape of the velocity
and tempersture profiles within the boundary layer and the laws for the
shearing stress and the heat flow on the wall are known. It was sug-
gested by von Kédrmén thet an epproximate solution may be obtained by
introducing approximate shapes for both profiles (reference 7). The
accuracy of the solution is better the more closely the assumed shapes
correspond to the real profiles. The method, however, proved compar-
atively insensitive to changes in the profile shape.

As mentioned in the section "INTRODUCTION" some information on the
shape of the velocity and temperature profiles in turbulent free-
convection flow can be obtained from reference 3. In figure 2, the
measured values of both profiles in the turbulent range are presented
with the ratios 6/9W and u/umax plotted against the distance from

the wall in an arbitrary scale. The value up,y was determined by

drawing curves through the measured velocity values given in table VI
of reference 3.
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The distance from the wall where the curves u/upgy have the value

0.5 was arbitrarily essigned the value 1. The lines in figure 2 are the
curves by which the temperature and velocity profiles are aspproximated
herein. These profiles are presented in figure 2 in such a way that the
velocity profile has the value 0.5 at a distance 1 and the temperature
profile the value 0.2 at a distance 0.5 from the wall. An indication of
the shape of turbulent free-convection flow profiles can also be obtained
from the measurements by Watzinger and Johnson (reference 4) on mixed
forced- and free-convection flow in a vertical tube. Some of these
measured profiles are presented in figure 3.

Equation (4), which describes the forced-convection temperature
profile, is used for the temperature profile in turbulent free-convection
flow. The profiles of figure 2 indicate that this assumption is rea-
sonable. The velocity profile in free-convection flow, however, differs
from the forced-flow profile by having a velocity of zero outside the
boundary layer. Accordingly, equation (1) is multiplied by a function
of y/&, which brings the velocities back to the value zero at the
outer edge of the boundary layer where y = d. Two simple expressions
that fulfill this condition and that agree quite well with the meas-
ured values are plotted in figure 2. The velocity profile that rep-
resents the measured points somewhat better is used in the following
calculations:

s @7 (-3 2

Equation (12) is valid for values of y less than &. For larger
values of ¥y, u = 0. The maximum velocity wupgx of this profile can

be found by differentiating equation (12), giving

Upax = 0.537 uj (13)

max

By use of equations (4) and (12) and the fact that u =0 and 6 = O
for distances greater than & from the wall, the integrals in the
momentum and heat-flow equations (equations (10) and (11)) become

N1

[w]
[o7)

<
I

= 0.0523 6ulz

0.125 86,

S
o~

DO

o

~«

i)
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ud dy = 0.0366 6u16w
1 O

The same value of & was used for the velocity and temperature
profiles. Calculations on forced-convection heat transfer indicate
that the same value of © <for the velocity and temperature profiles
can be used for fluids that have a Prandtl number close to one (ref-
erence 8). For very large or small Prandtl numbers in forced flow,
the thickness of the temperature boundary layer is considerably smaller
or larger than the thickness of the velocity boundary layer. This con-
dition is also probably true for free-convection flow.

In order to solve boundary-layer equations (10) and (11) the laws
for the shearing stress on the wall and the heat flow must be intro-
duced. It is assumed that, in the layers very near the wall, the
conditions are similar for free- and forced-convection flow and that
the same laws for the shearing stress and the heat flow that are used
in forced-convection flow can therefore be used in free-convection
flow. A similar assumption for the shearing stress was used by von
Kérmén to calculate the radial flow on a rotatlng disk, w1th satis-
factory results (reference 7).

As s consequence of the preceding assumption equations (2) and
(8) will be used for free-convection flow. Very near the wall the
second term in equation (12) for the free-convection-velocity profile
is one and, therefore, the same transformation that led in forced flow
from equation (2) to equation (3) can be made for free-convection flow.
By introducing the evaluated integrals and equations (3) and (8) the
momentum and heat-flow equations become

1/4
- 2 (v 14
0.125 gpo_b - 0.0225 uy (p §> (14)

da 2
0.0523 = (ul 8> Ny

- i

) 1/4 -2/3
0.0225 u, ;1-5-) .(Pr) (15)

L]

0.0366 == (u é)

Equations (14) and (15) are total differential equations from which the
two unknown values ® and wuj may be determined as functions of x.
Equations (14) and (15), can be solved by introducing

u = Cuxm (16)

1392
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5 = Cgx" (17)
The introduction of these values transforms equations (14) and (15) into

0.0523(2m+n) C,ZCaxEM0-1 = 0,12580, Cox™ -
0.0225 cu7/4 05'1/4 p1/4 (Tm/a)-(n/2)
(18)
m+n-1 .
0.0366(m+n)C Cox

- 0.0225 (Pr) /3 p1/t ¢ 3/t ¢ 1/4,(3n/t)-(n/2)

(19)
Because equations (18) and (19) must be valid for any value of x, the
exponents of x must be identical, that is,
2mtn-l = n = Zg - 2
m+n-1 = %? - 2

It can be seen that this condition is fulfilled if

1 7 .
m=3 and n =gz (20)

With these values of m and n equation (19) can be solved for the
constant Cy

Cy = 0.0689 vCg > (pr)~8/3

(21)
Introducing this constant into equation (18) gives
10 p° 2/3] -16/3
CstO = 0.00338 —E— |140.494(Pr) (Pr) (22)
gBoy

. gROyx”
Introducing the Grashof number Gr

gives for the velocity
V

-1/2
u; = 1.185 2 (Gr)l/z[:1+0.494(Pr)2/%] (23)
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and for the boundary-layer thickness

1/10
® = 0.565 x(Gr)‘l/lo(Pr)'8/15 [i+0.494(Pr)2/.] (24)
[AN]
i [¢2]
More significent then the value uy; 1s the maximum velocity A
Upay Within the boundary layer. (See equation (13).) A Reynolds
number is obtained to make this velocity dimensionless
u_.x -1/2
_ Unax 1/2 2/3]
Re . = —p— = 0.636 (Gr) [ﬁ+o.494(Pr) (25)
A more significant value characterizing the thickness of the bound-
ary layer than the value & used up to now is the displacement thick-
ness ©¥, which is defined for free-convection flow by the equation
(=~
o* = 2 gy
0 UYmax
With the use of equations (12) and (13) it is found that .
&% = 0.272 8

_ The displacement thickness made dimensionless by the distance x
Trom the leading edge of the plate is therefore

1/10

-

%; _ 0.154 (Gr)~Y/10(py)-8/15 [i+0.494(Pr)2/%]

The heat-transfer coefficient H = qw/Gw at the point x on the

wall is found by introducing the boundary-layer thickness & and the
velocity wu; into equation (8). Chenging to the usually presented
Nusselt number Nu = Hx/k gives’

-2/5
Nu = 0.0295 (c,r)z/5 (Pr)7/15 [}+o.494 (Pr)z/%] (26)

In order to compare this equation with experimental results, it is nec-

essary to change from the local heat-transfer coefficient to the average

value along the plate. By introducing the expression for the Grashof

nunber into equation (26), it can be seen that the local heat-transfer
coefficient is proportional to the power 0.2 of the distance x o
(B = CHxO'z). With the assumption that the boundary layer is turbulent

- from the leading edge, the average heat-transfer coefficient becomes
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X X

(@]

c
H d_x = _H_ Xo'z d_x = ._.._H. XO.2 = ._E_ (27)
0 b4 0 1.2 l.2

H&V =

Ll o

In reality the boundary layer is first laminar and only at a certain
distance from the lower edge of the plate does it become turbulent.
The preceding expression for the average heat-transfer coefficient can
therefore be expected to represent the true value only at Grashof num-
bers so high that the extent of the laminar boundary layer is small
compared with the total length x. This limit for the Grashof number
seems to be near 1010, For Grashof numbers higher than this value the
average Nusselt number can be calculated with equation (27); therefore,

Nu_ = 0.0246 (6r)2/5 (pr)7/15 E.+o.4494 (pr)2/3 2fs (28)

In order to determine to what extent the shape of the velocity
profile influences the results, a calculation was made with the second
velocity distribution shown in figure 2.

‘mu (z>1/7< _X)z (29)

Only the numerical constants are influenced by the change in the profile

shape. The constant preceding the value (Pr)z/3 chenges from 0.494 to
0.342 in all equations. In addition, the value 0.636 changes to 0.487
in the equation for Repayx; in the equation for 8*/x the value 0.154
changes to 0.200 and in the equation for Nugy the constant 0.0246
changes to 0.0198.

COMPARISON WITH EXPERIMENTS

In figure 4 the results of experiments carried out in different
investigations (references 1 and 2) are plotted as the average Nusselt
number Nugy against the product Gr Pr. For the lower values of

Gr Pr the experimental results quite accurately fit the equation
Nu . = 0.555 (Gr pr)/*
U,y = 0. r Pr

which was, with a slight adjustment of the constant, theoretically
derived for laminar free-convection flow._ The experimental results in
the turbulent range (Gr Pr = 1010 o 1012) may be represented by
the equation
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Moy, = 0.0210 (Gr Pr)2/® (30)

The exponent of the Grashof number in this equation is the same as that
of equation (28) derived in the previous section. When equation (28)
is transformed into the form of equation (30) in such a way that the
values of botk equations are the same for Pr = 0.72, the constant of
equation (28) becomes 0.0210. The heat-transfer coefficient derived
with equation (12) for the velocity profile is in perfect agreement
with the experimental results. Such agreement is probably a coinci-
dence. The profile given by equation (29), which does not fit the
velocity distributions measured by Griffiths and Davis in reference 3
as well as does the first profile, gives heat-transfer coefficients
that are 17-percent lower than the measured values.

The values for the maximum velocity within the boundary layer and
the boundary-layer-displacement thickness agree poorly with the values
messured in reference 3 in:the turbulent range. Heat-transfer coeffi-
cients were not measured therein on the experimental epparatus on which
velocity and temperature profiles were obtained.

Whereas the velocity and temperature profile shapes as measured in
reference 3 are typical of turbulent free-convection flow the order of
magnitude of these profiles appears to be in error. It can be shown .
that there is disagreement within the measured values themselves. The
heat given off by the plate to the air stream must be carried away
within the boundary layer. The measured temperature and velocity pro-
files as well as the measured maximum velocity and the boundary-layer
thickness very little along the plate in the turbulent range, which
means that only a small part of the heat given off by the wall is found
in the boundary layer. The horizontal dimension of the plate may have
been too small compared with the vertical length to make the flow in
the center part two~dimensional and air may have flowed into the bound-
ary layer from the sides.

SUMMARY OF RESULTS

With the use of Kérmin's approximate method, & calculation was
carried out for the flow and heat transfer in the turbulent free-
convection boundary layer on a vertical flat plate. The calculation
used relations for the heat flow and shearing stress on the wall devel-
oped for forced turbulent flow and velocity and temperature profiles
that approximate well the shapes of profiles measured by Griffiths and
Davis. .

1392
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A formula was derived for the heat-transfer coefficient that waes in
good agreement with measured values in the range of Grashof numbers
from 1010 o 1O12 and that can be used to extrapolate the values into
the range of higher Grashof numbers. The formula is valid for Prandtl
numbers that are close to unity.

The calculation also yielded formulas for the maximum velocity in
the boundary layer and for the boundary-layer thickness.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, July 12, 1950.
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APPENDIX -~ SYMBOLS &
o .
The following symbols are used in this report: 3
a thermal diffusivity, sq ft/sec
Cq constant for variation of heat-transfer coefficient with %02
Cu constant for variation of velocity wu. 1n boundary layer
. m » 1
with x
Cs constant for variation of boundary-layer thickness with x0
s specific heat at constant pressure, Btu/(1b)(°F)
gﬁewx3
Gr Grashof number,
2
v
g acceleration due to gravity, f‘t/secz
H heat-transfer coefficient, Btu/(sq ft)(sec)(°F) -
k heat conductivity, Btu/(ft)(sec)(°F)
1 length (fig. 1), ft
m exponent
Nu Nusselt number, %x;
n exponent
c
Pr Prandtl number, Y = goptt
a k
P pressure, 1b/(sq ft)
q specific heat flow, Btu/(sec)(sq ft)
Yoo X
Repgx  Reynolds number based on maximum velocity .., —g5—
. /4 .
St Stanton number, —¥ _ =0.0225 _1’__)
, g0CpUy Oy u 8
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temperature, p

t

u velocity component in x-direction, ft/sec

uy velocity outside boundary layer of compareble forced-convection
flow, ft/sec

v specific volume, cu £t/1b

b'd ' coordinate (distance along plate from starting point of bound-
ary layer), ft '

y coordinate (distance from wall), ft

B expansion coefficient, 1/°F

5] boundary-layer thickness, ft

o* displacement thickness of boundary layer, ft

6 temperature difference, O

Oy, temperature difference between wall and fluid outside of bound-
ary layer,

b absolute viscosity, pv, 1b sec/sq ft

v kinematic viscosity, sq ft/sec

0 mass density, (lb)(secz)/ft4

T shearing stress, 1b/sq ft

Subscripts:

av average value

max maximum value

W

on wall
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